
causal𝑐𝑢𝑟𝑣𝑒
Release 1.0.6

Apr 26, 2021

Getting Started

1 Introduction to causal-curve 1
1.1 Interpreting the causal curve . 1
1.2 A caution about causal inference assumptions . 3
1.3 References . 4

2 Installation, testing and development 5
2.1 Dependencies . 5
2.2 User installation . 6
2.3 Testing . 6
2.4 Development . 6

3 Contributing guide 7
3.1 Submitting a bug report or a feature request . 7
3.2 Contributing code . 8
3.3 Contributing to the documentation . 9

4 Health data: generating causal curves and examining mediation 11
4.1 The causal effect of blood lead levels on cognitive performance in children 11
4.2 Do blood lead levels mediate the relationship between poverty and cognitive performance? 15
4.3 References . 16

5 GPS_Regressor Tool (continuous treatments, continuous outcomes) 17
5.1 References . 19

6 GPS_Classifier Tool (continuous treatments, binary outcomes) 21
6.1 References . 23

7 TMLE_Regressor Tool (continuous treatments, continuous outcomes) 25
7.1 References . 27

8 Mediation Tool (continuous treatment, mediator, and outcome) 29
8.1 References . 31

9 causal_curve 33
9.1 causal_curve package . 33

10 Change Log 45
10.1 Version 1.0.6 . 45

i

10.2 Version 1.0.5 . 45
10.3 Version 1.0.4 . 45
10.4 Version 1.0.3 . 45
10.5 Version 1.0.2 . 45
10.6 Version 1.0.1 . 46
10.7 Version 1.0.0: Major Update . 46
10.8 Version 0.5.2 . 46
10.9 Version 0.5.1 . 46
10.10 Version 0.5.0 . 46
10.11 Version 0.4.1 . 46
10.12 Version 0.4.0 . 46
10.13 Version 0.3.8 . 47
10.14 Version 0.3.7 . 47
10.15 Version 0.3.6 . 47
10.16 Version 0.3.5 . 47
10.17 Version 0.3.4 . 47
10.18 Version 0.3.3 . 47
10.19 Version 0.3.2 . 47
10.20 Version 0.3.1 . 48
10.21 Version 0.3.0 . 48
10.22 Version 0.2.4 . 48
10.23 Version 0.2.3 . 48
10.24 Version 0.2.2 . 48
10.25 Version 0.2.1 . 48
10.26 Version 0.2.0 . 48
10.27 Version 0.1.3 . 48
10.28 Version 0.1.2 . 49
10.29 Version 0.1.1 . 49
10.30 Version 0.1.0 . 49
10.31 Version 0.0.10 . 49
10.32 Version 0.0.9 . 49

11 Citation 51

12 Summary 53

13 Quick example (of the GPS_Regressor tool) 55

Python Module Index 57

Index 59

ii

CHAPTER 1

Introduction to causal-curve

In academia and industry, randomized controlled experiments (or simply experiments or “A/B tests”) are considered
the gold standard approach for assessing the true, causal impact of a treatment or intervention. For example:

• We want to increase the number of times per day new customers log into our business’s website. Will it help
if we send daily emails out to our customers? We take a group of 2000 new business customers and half is
randomly chosen to receive daily emails while the other half receives one email per week. We follow both
groups forward in time for a month compare each group’s average number of logins per day.

However, for ethical or financial reasons, experiments may not always be feasible to carry out.

• It’s not ethical to randomly assign some people to receive a possible carcinogen in pill form while others receive
a sugar pill, and then see which group is more likely to develop cancer.

• It’s not feasible to increase the household incomes of some New York neighborhoods, while leaving others
unchanged to see if changing a neighborhood’s income inequality would improve the local crime rate.

“Causal inference” methods are a set of approaches that attempt to estimate causal effects from observational rather
than experimental data, correcting for the biases that are inherent to analyzing observational data (e.g. confounding
and selection bias) [@Hernán:2020].

As long as you have varying observational data on some treatment, your outcome of interest, and potentially con-
founding variables across your units of analysis (in addition to meeting the assumptions described below), then you
can essentially estimate the results of a proper experiment and make causal claims.

1.1 Interpreting the causal curve

Two of the methods contained within this package produce causal curves for continuous treatments (see the GPS and
TMLE methods). Both continuous and binary treatments can be modeled (only the GPS_Classifier tool can handle
binary outcomes).

Continuous outcome:

1

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

Using the above causal curve as an example, we see that employing a treatment value between 50 - 60 causally
produces the highest outcome values. We also see that the treatment produces a smaller effect if lower or higher than
that range. The confidence intervals become wider on the parts of the curve where we have fewer data points (near the
minimum and maximum treatment values).

This curve differs from a simple bivariate plot of the treatment and outcome or even a similar-looking plot generated
through standard multivariable regression modeling in a few important ways:

• This curve represents the estimated causal effect of a treatment on an outcome, not the association between
treatment and outcome.

• This curve represents a population-level effect, and should not be used to infer effects at the individual-level (or
whatever the unit of analysis is).

• To generate a similar-looking plot using multivariable regression, you would have to hold covariates constant,
and any treatment effect that is inferred occurs within the levels of the covariates specified in the model. The
causal curve averages out across all of these strata and gives us the population marginal effect.

Binary outcome:

2 Chapter 1. Introduction to causal-curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

In the case of binary outcome, the GPS_Classifier tool can be used to estimate a curve of odds ratios. Every point on
the curve is relative to the lowest treatment value. The highest effect (relative to the lowest treatment value) is around
a treatment value of -1.2. At this point in the treatment, the odds of a positive class occurring is 5.6 times higher
compared with the lowest treatment value. This curve is always on the relative scale. This is why the odds ratio for
the lowest point is always 1.0, because it is relative to itself. Odds ratios are bounded [0, inf] and cannot take on a
negative value. Note that the confidence intervals at any given point in the curve isn’t symmetric.

1.2 A caution about causal inference assumptions

There is a well-documented set of assumptions one must make to infer causal effects from observational data. These
are covered elsewhere in more detail, but briefly:

• Causes always occur before effects: The treatment variable needs to have occurred before the outcome.

• SUTVA: The treatment status of a given individual does not affect the potential outcomes of any other individ-
uals.

• Positivity: Any individual has a positive probability of receiving all values of the treatment variable.

• Ignorability: All major confounding variables are included in the data you provide.

Violations of these assumptions will lead to biased results and incorrect conclusions!

In addition, any covariates that are included in causal-curve models are assumed to only be confounding variables.

1.2. A caution about causal inference assumptions 3

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

None of the methods provided in causal-curve rely on inference via instrumental variables, they only rely on the data
from the observed treatment, confounders, and the outcome of interest (like the above GPS example).

1.3 References

Hernán M. and Robins J. Causal Inference: What If. Chapman & Hall, 2020.

Ahern J, Hubbard A, and Galea S. Estimating the Effects of Potential Public Health Interventions on Population Dis-
ease Burden: A Step-by-Step Illustration of Causal Inference Methods. American Journal of Epidemiology. 169(9),
2009. pp.1140–1147.

4 Chapter 1. Introduction to causal-curve

CHAPTER 2

Installation, testing and development

2.1 Dependencies

causal-curve requires:

• black

• coverage

• future

• joblib

• numpy

• numpydoc

• pandas

• patsy

• progressbar2

• pygam

• pytest

• python-dateutil

• python-utils

• pytz

• scikit-learn

• scipy

• six

• sphinx_rtd_theme

• statsmodels

5

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

2.2 User installation

If you already have a working installation of numpy, pandas, pygam, scipy, and statsmodels, you can easily install
causal-curve using pip:

pip install causal-curve

You can also get the latest version of causal-curve by cloning the repository:

git clone https://github.com/ronikobrosly/causal-curve.git
cd causal-curve
pip install .

2.3 Testing

After installation, you can launch the test suite from outside the source directory using pytest:

pytest

2.4 Development

Please reach out if you are interested in adding additional tools, or have ideas on how to improve the package!

6 Chapter 2. Installation, testing and development

CHAPTER 3

Contributing guide

Thank you for considering contributing to causal-curve. Contributions from anyone are welcomed. There are many
ways to contribute to the package, such as reporting bugs, adding new features and improving the documentation. The
following sections give more details on how to contribute.

Important links:

• The project is hosted on GitHub: https://github.com/ronikobrosly/causal-curve

3.1 Submitting a bug report or a feature request

If you experience a bug using causal-curve or if you would like to see a new feature being added to the package, feel
free to open an issue on GitHub: https://github.com/ronikobrosly/causal-curve/issues

3.1.1 Bug report

A good bug report usually contains:

• a description of the bug,

• a self-contained example to reproduce the bug if applicable,

• a description of the difference between the actual and expected results,

• the versions of the dependencies of causal-curve.

The last point can easily be done with the following commands:

import numpy; print("NumPy", numpy.__version__)

These guidelines make reproducing the bug easier, which make fixing it easier.

7

https://github.com/ronikobrosly/causal-curve
https://github.com/ronikobrosly/causal-curve/issues

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

3.1.2 Feature request

A good feature request usually contains:

• a description of the requested feature,

• a description of the relevance of this feature to causal inference,

• references if applicable, with links to the papers if they are in open access.

This makes reviewing the relevance of the requested feature easier.

3.2 Contributing code

In order to contribute code, you need to create a pull request on https://github.com/ronikobrosly/causal-curve/pulls

3.2.1 How to contribute

To contribute to causal-curve, you need to fork the repository then submit a pull request:

1. Fork the repository.

2. Clone your fork of the causal-curve repository from your GitHub account to your local disk:

git clone https://github.com/yourusername/causal-curve.git
cd causal-curve

where yourusername is your GitHub username.

3. Install the development dependencies:

pip install pytest pylint black

4. Install causal-curve in editable mode:

pip install -e .

5. Add the upstream remote. It creates a reference to the main repository that can be used to keep your repository
synchronized with the latest changes on the main repository:

git remote add upstream https://github.com/ronikobrosly/causal-curve.git

6. Fetch the upstream remote then create a new branch where you will make your changes and switch to it:

git fetch upstream
git checkout -b my-feature upstream/main

where my-feature is the name of your new branch (it’s good practice to have an explicit name). You can
now start making changes.

7. Make the changes that you want on your new branch on your new local machine. When you are done, add the
changed files using git add and then git commit:

git add modified_files
git commit

Then push your commits to your GitHub account using git push:

8 Chapter 3. Contributing guide

https://github.com/ronikobrosly/causal-curve/pulls

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

git push origin my-feature

8. Create a pull request from your work. The base fork is the fork you would like to merge changes into, that
is ronikobrosly/causal-curve on the main branch. The head fork is the repository where you made
your changes, that is yourusername/causal-curve on the my-feature branch. Add a title and a
description of your pull request, then click on Create Pull Request.

3.2.2 Pull request checklist

Before pushing to your GitHub account, there are a few rules that are usually worth complying with.

• Make sure that your code passes tests. You can do this by running the whole test suite with the pytest
command. If you are experienced with pytest, you can run specific tests that are relevant for your changes.
It is still worth it running the whole test suite when you are done making changes since it does not take very
long. For more information, please refer to the pytest documentation. If your code does not pass tests but you
are looking for help, feel free to do so (but mention it in your pull request).

• Make sure to add tests if you add new code. It is important to test new code to make sure that it behaves as
expected. Ideally code coverage should increase with any new pull request. You can check code coverage using
pytest-cov:

pip install pytest-cov
pytest --cov causal-curve

• Make sure that the documentation renders properly. To build the documentation, please refer to the Con-
tributing to the documentation guidelines.

• Make sure that your PR does not add PEP8 violations. You can run black and pylint to only test the modified
code. Feel free to submit another pull request if you find other PEP8 violations.

3.3 Contributing to the documentation

Documentation is as important as code. If you see typos, find docstrings unclear or want to add examples illustrating
functionalities provided in causal-curve, feel free to open an issue to report it or a pull request if you want to fix it.

3.3.1 Building the documentation

Building the documentation requires installing some additional packages:

pip install sphinx==3.0.2 sphinx-rtd-theme numpydoc

To build the documentation, you must be in the doc folder:

cd doc

To generate the website with the example gallery, run the following command:

make html

The documentation will be generated in the _build/html. You can double click on index.html to open the
index page, which will look like the first page that you see on the online documentation. Then you can move to the
pages that you modified and have a look at your changes.

3.3. Contributing to the documentation 9

http://doc.pytest.org/en/latest/usage.html

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

Finally, repeat this process until you are satisfied with your changes and open a pull request describing the changes
you made.

10 Chapter 3. Contributing guide

CHAPTER 4

Health data: generating causal curves and examining mediation

To provide an end-to-end example of the sorts of analyses cause-curve can be used for, we’ll begin with a health topic.
A notebook containing the pipeline to produce the following output is available here. Note: Specific examples of the
individual causal-curve tools with code are available elsewhere in this documentation.

4.1 The causal effect of blood lead levels on cognitive performance
in children

Despite the banning of the use of lead-based paint and the use of lead in gasoline in the United States, lead exposure
remains an enormous public health problem for children and adolescents. This is particularly true for poorer children
living in older homes in inner-city environments. For children, there is no known safe level of exposure to lead, and
even small levels of lead measured in their blood have been shown to affect IQ and academic achievement. One of
the scariest parts of lead exposure is that its effects are permanent. Blood lead levels (BLLs) of 5 ug/dL or higher are
considered elevated.

There are much research around and many government programs for lead abatement. In terms of public policy, it would
be helpful to understand how childhood cognitive outcomes would be affected by reducing BLLs in children. This is
the causal question to answer, with blood lead levels being the continuous treatment, and the cognitive outcomes being
the outcome of interest.

11

https://github.com/ronikobrosly/causal-curve/blob/main/examples/NHANES_BLL_example.ipynb

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

(Photo attribution: Thester11 / CC BY (https://creativecommons.org/licenses/by/3.0))

To explore that problem, we can analyze data collected from the National Health and Nutrition Examination Survey
(NHANES) III. This was a large, national study of families throughout the United States, carried out between 1988
and 1994. Participants were involved in extensive interviews, medical examinations, and provided biological samples.
As part of this project, BLLs were measured, and four scaled sub-tests of the Wechsler Intelligence Scale for Children-
Revised and the Wide Range Achievement Test-Revised (WISC/WRAT) cognitive test were carried out. This data is
de-identified and publicly available on the Centers for Disease Control and Prevention (CDC) government website.

When processing the data and missing values were dropped, there were 1,764 children between 6 and 12 years of age
with complete data. BLLs among these children were log-normally distributed, as one would expect:

12 Chapter 4. Health data: generating causal curves and examining mediation

https://creativecommons.org/licenses/by/3.0

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

The four scaled sub-tests of the WISC/WRAT included a math test, a reading test, a block design test (a test of spatial
visualization ability and motor skill), and a digit spanning test (a test of memory). Their distributions are shown here:

Using a well-known study by Bruce Lanphear conducted in 2000 as a guide, we used the following features as poten-
tially confounding “nuisance” variables:

• Child age

4.1. The causal effect of blood lead levels on cognitive performance in children 13

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

• Child sex (in 1988 - 1994 the CDC assumed binary sex)

• Child race/ethnicity

• The education level of the guardian

• Whether someone smokes in the child’s home

• Whether the child spent time in a neonatal intensive care unit as a baby

• Whether the child is experiencing food insecurity (is food sometimes not available due to lack of resources?).

In our “experiment”, these above confounders will be controlled for.

By using either the GPS or TMLE tools included in causal-curve one can generate the causal dose-response curves
for BLLs in relation to the four outcomes:

Note that the lower limit of detection for the blood lead test in this version of NHANES was 0.7 ug/dL. So lead levels
below that value are not possible.

In the case of the math test, these results indicate that by reducing BLLs in this population to their lowest value would
cause scaled math scores to increase by around 2 points, relative to the BLLs around 10 ug/dL. Similar results are found
for the reading and block design test, although the digit spanning test causal curve appears possibly flat (although with
the sparse observations at the higher end of the BLL range and the wide confidence intervals it is difficult to say).

The above curves differ from standard regression curves in a few big ways:

• Even though the data that we used to generate these curves are observational, if causal inference assumptions
are met, these curves can be interpretted as causal.

14 Chapter 4. Health data: generating causal curves and examining mediation

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

• These models were created using the potential outcomes / counterfactual framework, while standard models are
not. Also, the approach we used here essentially simulates experimental conditions by balancing out treatment
assignment across the various confounders, and controlling for their effects.

• Even if complex interactions between the variables are modelled, these curves average over the various interac-
tion effects and subgroups. In this sense, these are “marginal” curves.

• These curves should not be used to make predictions at the individual level. These are population level estimates
and should remain that way.

4.2 Do blood lead levels mediate the relationship between poverty
and cognitive performance?

There is a well-known link between household income and child academic performance. Now that we have some
evidence of a potentially causal relationship between BLLs and test performance in children, one might wonder if lead
exposure might mediate the relationship between household income academic performance. In other words, in this
population does low income cause one to be exposed more to lead, which in turn causes lower performance? Or is
household income directly linked with academic performance or through other variables?

NHANES III captured each household’s Poverty Index Ratio (the ratio of total family income to the federal poverty
level for the year of the interview). For this example, let’s focus just on the math test as an outcome. Using causal-
curve’s mediation tool, we found that the overall, mediating indirect effect of BLLs are 0.20 (0.17 - 0.23). This
means that lead exposure accounts for 20% of the relationship between low income and low test performance in this
population. The mediation tool also allows you to see how the indirect effect varies as a function of the treatment.
As the plot shows, the mediating effect is relatively flat, although interesting there is a hint of an increase as income
increases relative to the poverty line.

4.2. Do blood lead levels mediate the relationship between poverty and cognitive performance? 15

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

4.3 References

Centers for Disease Control and Prevention. NHANES III (1988-1994). https://wwwn.cdc.gov/nchs/nhanes/nhanes3/
default.aspx. Accessed on July 2, 2020.

Centers for Disease Control and Prevention. Blood Lead Levels in Children. https://www.cdc.gov/nceh/lead/
prevention/blood-lead-levels.htm. Accessed on July 2, 2020.

Environmental Protection Agency. Learn about Lead. https://www.epa.gov/lead/learn-about-lead. Accessed on July
2, 2020.

Pirkle JL, Kaufmann RB, Brody DJ, Hickman T, Gunter EW, Paschal DC. Exposure of the U.S. population to lead,
1991-1994. Environmental Health Perspectives, 106(11), 1998, pp. 745–750.

Lanphear BP, Dietrich K, Auinger P, Cox C. Cognitive Deficits Associated with Blood Lead Concentrations <10 pg/dL
in US Children and Adolescents. In: Public Health Reports, 115, 2000, pp.521-529.

16 Chapter 4. Health data: generating causal curves and examining mediation

https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx
https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx
https://www.cdc.gov/nceh/lead/prevention/blood-lead-levels.htm
https://www.cdc.gov/nceh/lead/prevention/blood-lead-levels.htm
https://www.epa.gov/lead/learn-about-lead

CHAPTER 5

GPS_Regressor Tool (continuous treatments, continuous outcomes)

In this example, we use this package’s GPS_Regressor tool to estimate the marginal causal curve of some continuous
treatment on a continuous outcome, accounting for some mild confounding effects. To put this differently, the result
of this will be an estimate of the average of each individual’s dose-response to the treatment. To do this we calculate
generalized propensity scores (GPS) to correct the treatment prediction of the outcome.

Compared with the package’s TMLE method, the GPS methods are more computationally efficient, better suited for
large datasets, but produces wider confidence intervals.

In this example we use simulated data originally developed by Hirano and Imbens but adapted by others (see ref-
erences). The advantage of this simulated data is it allows us to compare the estimate we produce against the true,
analytically-derived causal curve.

Let 𝑡𝑖 be the treatment for the i-th unit, let 𝑥1 and 𝑥2 be the confounding covariates, and let 𝑦𝑖 be the outcome measure.
We assume that the covariates and treatment are exponentially-distributed, and the treatment variable is associated with
the covariates in the following way:

>>> import numpy as np
>>> import pandas as pd
>>> from scipy.stats import expon

>>> np.random.seed(333)
>>> n = 5000
>>> x_1 = expon.rvs(size=n, scale = 1)
>>> x_2 = expon.rvs(size=n, scale = 1)
>>> treatment = expon.rvs(size=n, scale = (1/(x_1 + x_2)))

The GPS is given by

𝑓(𝑡, 𝑥1, 𝑥2) = (𝑥1 + 𝑥2) * 𝑒−(𝑥1+𝑥2)*𝑡

If we generate the outcome variable by summing the treatment and GPS, the true causal curve is derived analytically
to be:

𝑓(𝑡) = 𝑡+
2

(1 + 𝑡)3

17

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

The following code completes the data generation:

>>> gps = ((x_1 + x_2) * np.exp(-(x_1 + x_2) * treatment))
>>> outcome = treatment + gps + np.random.normal(size = n, scale = 1)

>>> truth_func = lambda treatment: (treatment + (2/(1 + treatment)**3))
>>> vfunc = np.vectorize(truth_func)
>>> true_outcome = vfunc(treatment)

>>> df = pd.DataFrame(
>>> {
>>> 'X_1': x_1,
>>> 'X_2': x_2,
>>> 'Treatment': treatment,
>>> 'GPS': gps,
>>> 'Outcome': outcome,
>>> 'True_outcome': true_outcome
>>> }
>>>).sort_values('Treatment', ascending = True)

With this dataframe, we can now calculate the GPS to estimate the causal relationship between treatment and outcome.
Let’s use the default settings of the GPS_Regressor tool:

>>> from causal_curve import GPS_Regressor
>>> gps = GPS_Regressor()
>>> gps.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome'])
>>> gps_results = gps.calculate_CDRC(0.95)

You now have everything to produce the following plot with matplotlib. In this example with only mild confounding,
the GPS-calculated estimate of the true causal curve produces has approximately half the error of a simple LOESS
estimate using only the treatment and the outcome.

18 Chapter 5. GPS_Regressor Tool (continuous treatments, continuous outcomes)

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

The GPS_Regressor tool also allows you to estimate a specific set of points along the causal curve. Use the predict
and predict_interval methods to produce a point estimate and prediction interval, respectively.

5.1 References

Galagate, D. Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric
Dose-Response function with Applications. PhD thesis, 2016.

Moodie E and Stephens DA. Estimation of dose–response functions for longitudinal data using the generalised propen-
sity score. In: Statistical Methods in Medical Research 21(2), 2010, pp.149–166.

Hirano K and Imbens GW. The propensity score with continuous treatments. In: Gelman A and Meng XL (eds) Ap-
plied bayesian modeling and causal inference from incomplete-data perspectives. Oxford, UK: Wiley, 2004, pp.73–84.

5.1. References 19

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

20 Chapter 5. GPS_Regressor Tool (continuous treatments, continuous outcomes)

CHAPTER 6

GPS_Classifier Tool (continuous treatments, binary outcomes)

As with the other GPS tool, we calculate generalized propensity scores (GPS) but with the classifier we can estimate
the point-by-point causal contribution of a continuous treatment to a binary outcome. The GPS_Classifier does this by
estimating the log odds of a positive outcome and odds ratio (odds of positive outcome / odds of negative outcome)
along the entire range of treatment values:

21

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

Currently, the causal-curve package does not contain a TMLE implementation that is appropriate for a binary outcome,
so the GPS_Classifier tool will have to suffice for this sort of outcome.

This tool works much like the _GPS_Regressor tool; as long as the outcome series in your dataframe contains binary
integer values (e.g. 0’s and 1’s) the fit() method will work as it’s supposed to:

>>> df.head(5) # a pandas dataframe with your data
X_1 X_2 Treatment Outcome

0 0.596685 0.162688 0.000039 1
1 1.014187 0.916101 0.000197 0
2 0.932859 1.328576 0.000223 0
3 1.140052 0.555203 0.000339 0
4 1.613471 0.340886 0.000438 1

With this dataframe, we can now calculate the GPS to estimate the causal relationship between treatment and outcome.
Let’s use the default settings of the GPS tool:

>>> from causal_curve import GPS_Classifier
>>> gps = GPS()
>>> gps.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome'])
>>> gps_results = gps.calculate_CDRC(0.95)

The gps_results object (a dataframe) now contains all of the data to produce the above plot.

If you’d like to estimate the log odds at a specific point on the curve, use the predict_log_odds to do so.

22 Chapter 6. GPS_Classifier Tool (continuous treatments, binary outcomes)

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

6.1 References

Galagate, D. Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric
Dose-Response function with Applications. PhD thesis, 2016.

Moodie E and Stephens DA. Estimation of dose–response functions for longitudinal data using the generalised propen-
sity score. In: Statistical Methods in Medical Research 21(2), 2010, pp.149–166.

Hirano K and Imbens GW. The propensity score with continuous treatments. In: Gelman A and Meng XL (eds) Ap-
plied bayesian modeling and causal inference from incomplete-data perspectives. Oxford, UK: Wiley, 2004, pp.73–84.

6.1. References 23

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

24 Chapter 6. GPS_Classifier Tool (continuous treatments, binary outcomes)

CHAPTER 7

TMLE_Regressor Tool (continuous treatments, continuous outcomes)

In this example, we use this package’s Targeted Maximum Likelihood Estimation (TMLE) tool to estimate the
marginal causal curve of some continuous treatment on a continuous outcome, accounting for some mild confounding
effects.

The TMLE algorithm is doubly robust, meaning that as long as one of the two models contained with the tool (the g
or q models) performs well, then the overall tool will correctly estimate the causal curve.

Compared with the package’s GPS methods incorporates more powerful machine learning techniques internally (gra-
dient boosting) and produces significantly smaller confidence intervals. However it is less computationally efficient
and will take longer to run. In addition, the treatment values provided should be roughly normally-distributed,
otherwise you may encounter internal math errors.

Let’s first generate some simple toy data:

>>> import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from causal_curve import TMLE_Regressor
np.random.seed(200)

>>> def generate_data(t, A, sigma, omega, noise=0, n_outliers=0, random_state=0):
y = A * np.exp(-sigma * t) * np.sin(omega * t)
rnd = np.random.RandomState(random_state)
error = noise * rnd.randn(t.size)
outliers = rnd.randint(0, t.size, n_outliers)
error[outliers] *= 35
return y + error

>>> treatment = np.linspace(0, 10, 1000)
outcome = generate_data(

t = treatment,
A = 2,
sigma = 0.1,
omega = (0.1 * 2 * np.pi),

(continues on next page)

25

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

(continued from previous page)

noise = 0.1,
n_outliers = 5

)
x1 = np.random.uniform(0,10,1000)
x2 = (np.random.uniform(0,10,1000) * 3)

>>> df = pd.DataFrame(
{

'x1': x1,
'x2': x2,
'treatment': treatment,
'outcome': outcome

}
)

All we do now is employ the TMLE_Regressor class, with mostly default settings:

>>> from causal_curve import TMLE_Regressor
tmle = TMLE_Regressor(

random_seed=111,
bandwidth=10

)

>>> tmle.fit(T = df['treatment'], X = df[['x1', 'x2']], y = df['outcome'])
gps_results = tmle.calculate_CDRC(0.95)

The resulting dataframe contains all of the data you need to generate the following plot:

To generate user-specified points along the curve, use the point_estimate and point_estimate_interval
methods:

26 Chapter 7. TMLE_Regressor Tool (continuous treatments, continuous outcomes)

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

>>> tmle.point_estimate(np.array([5.5]))
tmle.point_estimate_interval(np.array([5.5]))

7.1 References

Kennedy EH, Ma Z, McHugh MD, Small DS. Nonparametric methods for doubly robust estimation of continuous
treatment effects. Journal of the Royal Statistical Society, Series B. 79(4), 2017, pp.1229-1245.

van der Laan MJ and Rubin D. Targeted maximum likelihood learning. In: U.C. Berkeley Division of Biostatistics
Working Paper Series, 2006.

van der Laan MJ and Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. In:
The International Journal of Biostatistics 6(1), 2010.

7.1. References 27

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

28 Chapter 7. TMLE_Regressor Tool (continuous treatments, continuous outcomes)

CHAPTER 8

Mediation Tool (continuous treatment, mediator, and outcome)

In trying to explore the causal relationships between various elements, oftentimes you’ll use your domain knowledge to
sketch out your initial ideas about the causal connections. See the following causal DAG of the expected relationships
between smoking, diabetes, obesity, age, and mortality (Havumaki et al.):

At some point though, it’s helpful to validate these ideas with empirical tests. This tool provides a test that can estimate
the amount of mediation that occurs between a treatment, a purported mediator, and an outcome. In keeping with the
causal curve theme, this tool uses a test developed by Imai et al. when handling a continuous treatment and mediator.

In this example we use the following simulated data, and assume that the mediator variable is decided to be a mediator
by expert judgement.

29

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

>>> import numpy as np
>>> import pandas as pd

>>> np.random.seed(132)
>>> n_obs = 500

>>> treatment = np.random.normal(loc=50.0, scale=10.0, size=n_obs)
>>> mediator = np.random.normal(loc=70.0 + treatment, scale=8.0, size=n_obs)
>>> outcome = np.random.normal(loc=(treatment + mediator - 50), scale=10.0, size=n_
→˓obs)

>>> df = pd.DataFrame(
>>> {
>>> "treatment": treatment,
>>> "mediator": mediator,
>>> "outcome": outcome
>>> }
>>>)

Now we can instantiate the Mediation class:

>>> from causal_curve import Mediation
>>> med = Mediation(
>>> bootstrap_draws=100,
>>> bootstrap_replicates=100,
>>> spline_order=3,
>>> n_splines=5,
>>> verbose=True,
>>>)

We then fit the data to the med object:

>>> med.fit(
>>> T=df["treatment"],
>>> M=df["mediator"],
>>> y=df["outcome"],
>>>)

With the internal models of the mediation test fit with data, we can now run the calculate_mediation method to produce
the final report:

>>> med.calculate_mediation(ci = 0.95)
>>>
>>> ----------------------------------
>>> Mean indirect effect proportion: 0.5238 (0.5141 - 0.5344)
>>>
>>> Treatment_Value Proportion_Direct_Effect Proportion_Indirect_Effect
>>> 35.1874 0.4743 0.5257
>>> 41.6870 0.4638 0.5362
>>> 44.6997 0.4611 0.5389
>>> 47.5672 0.4745 0.5255
>>> 50.1900 0.4701 0.5299
>>> 52.7526 0.4775 0.5225
>>> 56.0204 0.4727 0.5273
>>> 60.5174 0.4940 0.5060
>>> 66.7243 0.4982 0.5018

30 Chapter 8. Mediation Tool (continuous treatment, mediator, and outcome)

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

The final analysis tells us that overall, the mediator is estimated to account for around 52% (+/- 1%) of the effect of
the treatment on the outcome. This indicates that moderate mediation is occurring here. The remaining 48% occurs
through a direct effect of the treatment on the outcome.

So long as we are confident that the mediator doesn’t play another role in the causal graph (it isn’t a confounder of the
treatment and outcome association), this supports the idea that the mediator is in fact a mediator.

The report also shows how this mediation effect various as a function of the continuous treatment. In this case, it
looks the effect is relatively flat (as expected). With a little processing and some basic interpolation, we can plot this
mediation effect:

8.1 References

Imai K., Keele L., Tingley D. A General Approach to Causal Mediation Analysis. Psychological Methods. 15(4),
2010, pp.309–334.

Havumaki J., Eisenberg M.C. Mathematical modeling of directed acyclic graphs to explore competing causal mech-
anisms underlying epidemiological study data. medRxiv preprint. doi: https://doi.org/10.1101/19007922. Accessed
June 23, 2020.

8.1. References 31

https://doi.org/10.1101/19007922

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

32 Chapter 8. Mediation Tool (continuous treatment, mediator, and outcome)

CHAPTER 9

causal_curve

9.1 causal_curve package

9.1.1 causal_curve.core module

Core classes (with basic methods) that will be invoked when other, model classes are defined

class causal_curve.core.Core
Bases: object

Base class for causal_curve module

static calculate_z_score(ci)
Calculates the critical z-score for a desired two-sided, confidence interval width.

Parameters

ci: float, the confidence interval width (e.g. 0.95)

Returns

Float, critical z-score value

static clip_negatives(number)
Helper function to clip negative numbers to zero

Parameters

number: int or float, any number that needs a floor at zero

Returns

Int or float of modified value

get_params()
Returns a dict of all of the object’s user-facing parameters

Parameters

33

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

None

Returns

self: object

if_verbose_print(string)
Prints the input statement if verbose is set to True

Parameters

string: str, some string to be printed

Returns

None

static rand_seed_wrapper(random_seed=None)
Sets the random seed using numpy

Parameters

random_seed: int, random seed number

Returns

None

9.1.2 causal_curve.gps_core module

Defines the Generalized Prospensity Score (GPS) Core model class

class causal_curve.gps_core.GPS_Core(gps_family=None, treatment_grid_num=100,
lower_grid_constraint=0.01, up-
per_grid_constraint=0.99, spline_order=3,
n_splines=30, lambda_=0.5, max_iter=100, ran-
dom_seed=None, verbose=False)

Bases: causal_curve.core.Core

In a multi-stage approach, this computes the generalized propensity score (GPS) function, and uses this in a
generalized additive model (GAM) to correct treatment prediction of the outcome variable. Assumes continuous
treatment, but the outcome variable may be continuous or binary.

WARNING:

-This algorithm assumes you’ve already performed the necessary transformations to categorical covariates (i.e.
these variables are already one-hot encoded and one of the categories is excluded for each set of dummy vari-
ables).

-Please take care to ensure that the “ignorability” assumption is met (i.e. all strong confounders are captured in
your covariates and there is no informative censoring), otherwise your results will be biased, sometimes strongly
so.

Parameters

gps_family: str, optional (default = None) Is used to determine the family of the glm used to
model the GPS function. Look at the distribution of your treatment variable to determine
which family is more appropriate. Possible values:

• ‘normal’

• ‘lognormal’

• ‘gamma’

34 Chapter 9. causal_curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

• None : (best-fitting family automatically chosen)

treatment_grid_num: int, optional (default = 100) Takes the treatment, and creates a
quantile-based grid across its values. For instance, if the number 6 is selected, this means
the algorithm will only take the 6 treatment variable values at approximately the 0, 20, 40,
60, 80, and 100th percentiles to estimate the causal dose response curve. Higher value here
means the final curve will be more finely estimated, but also increases computation time.
Default is usually a reasonable number.

lower_grid_constraint: float, optional(default = 0.01) This adds an optional constraint of the
lower side of the treatment grid. Sometimes data near the minimum values of the treatment
are few in number and thus generate unstable estimates. By default, this clips the bottom 1
percentile or lower of treatment values. This can be as low as 0, indicating there is no lower
limit to how much treatment data is considered.

upper_grid_constraint: float, optional (default = 0.99) See above parameter. Just like above,
but this is an upper constraint. By default, this clips the top 99th percentile or higher of
treatment values. This can be as high as 1.0, indicating there is no upper limit to how much
treatment data is considered.

spline_order: int, optional (default = 3) Order of the splines to use fitting the final GAM.
Must be integer >= 1. Default value creates cubic splines.

n_splines: int, optional (default = 30) Number of splines to use for the treatment and GPS in
the final GAM. Must be integer >= 2. Must be non-negative.

lambda_: int or float, optional (default = 0.5) Strength of smoothing penalty. Must be a pos-
itive float. Larger values enforce stronger smoothing.

max_iter: int, optional (default = 100) Maximum number of iterations allowed for the maxi-
mum likelihood algo to converge.

random_seed: int, optional (default = None) Sets the random seed.

verbose: bool, optional (default = False) Determines whether the user will get verbose status
updates.

References

Galagate, D. Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric
Dose-Response function with Applications. PhD thesis, 2016.

Moodie E and Stephens DA. Estimation of dose–response functions for longitudinal data using the generalised
propensity score. In: Statistical Methods in Medical Research 21(2), 2010, pp.149–166.

Hirano K and Imbens GW. The propensity score with continuous treatments. In: Gelman A and Meng XL (eds)
Applied bayesian modeling and causal inference from incomplete-data perspectives. Oxford, UK: Wiley, 2004,
pp.73–84.

Examples

>>> # With continuous outcome
>>> from causal_curve import GPS_Regressor
>>> gps = GPS_Regressor(treatment_grid_num = 200, random_seed = 512)
>>> gps.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome'])
>>> gps_results = gps.calculate_CDRC(0.95)
>>> point_estimate = gps.point_estimate(np.array([5.0]))
>>> point_estimate_interval = gps.point_estimate_interval(np.array([5.0]), 0.95)

9.1. causal_curve package 35

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

>>> # With binary outcome
>>> from causal_curve import GPS_Classifier
>>> gps = GPS_Classifier()
>>> gps.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Binary_Outcome'])
>>> gps_results = gps.calculate_CDRC(0.95)
>>> log_odds = gps.estimate_log_odds(np.array([5.0]))

Attributes

grid_values: array of shape (treatment_grid_num,) The gridded values of the treatment
variable. Equally spaced.

best_gps_family: str If no gps_family is specified and the algorithm chooses the best glm fam-
ily, this is the name of the family that was chosen.

gps_deviance: float The GPS model deviance

gps: array of shape (number of observations,) The calculated GPS for each observation

gam_results: ‘pygam.LinearGAM‘ class trained model of LinearGAM class, from pyGAM
library

Methods

fit: (self, T, X, y) Fits the causal dose-response model.
calculate_CDRC: (self,
ci)

Calculates the CDRC (and confidence interval) from trained model.

print_gam_summary:
(self)

Prints pyGAM text summary of GAM predicting outcome from the treatment
and the GPS.

calculate_CDRC(ci=0.95)
Using the results of the fitted model, this generates a dataframe of point estimates for the CDRC at each
of the values of the treatment grid. Connecting these estimates will produce the overall estimated CDRC.
Confidence interval is returned as well.

Parameters

ci: float (default = 0.95) The desired confidence interval to produce. Default value is 0.95,
corresponding to 95% confidence intervals. bounded (0, 1.0).

Returns

dataframe: Pandas dataframe Contains treatment grid values, the CDRC point estimate
at that value, and the associated lower and upper confidence interval bounds at that point.

self: object

fit(T, X, y)
Fits the GPS causal dose-response model. For now, this only accepts pandas columns. While the treatment
variable must be continuous (or ordinal with many levels), the outcome variable may be continuous or
binary. You must provide at least one covariate column.

Parameters

T: array-like, shape (n_samples,) A continuous treatment variable.

X: array-like, shape (n_samples, m_features) Covariates, where n_samples is the number
of samples and m_features is the number of features. Features can be a mix of continuous
and nominal/categorical variables.

36 Chapter 9. causal_curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

y: array-like, shape (n_samples,) Outcome variable. May be continuous or binary. If con-
tinuous, this must be a series of type float, if binary must be a series of type integer.

Returns

self [object]

print_gam_summary()
Prints the GAM model summary (uses pyGAM’s output)

Parameters

None

Returns

self: object

9.1.3 causal_curve.gps_regressor module

Defines the Generalized Prospensity Score (GPS) regressor model class

class causal_curve.gps_regressor.GPS_Regressor(gps_family=None, treat-
ment_grid_num=100,
lower_grid_constraint=0.01,
upper_grid_constraint=0.99,
spline_order=3, n_splines=30,
lambda_=0.5, max_iter=100, ran-
dom_seed=None, verbose=False)

Bases: causal_curve.gps_core.GPS_Core

A GPS tool that handles continuous outcomes. Inherits the GPS_core base class. See that base class code its
docstring for more details.

Methods

point_estimate:
(self, T)

Calculates point estimate within the CDRC given treatment values. Can only be used
when outcome is continuous.

point_estimate_interval:
(self, T, ci)

Calculates the prediction confidence interval associated with a point estimate within
the CDRC given treatment values. Can only be used when outcome is continuous.

point_estimate(T)
Calculates point estimate within the CDRC given treatment values. Can only be used when outcome
is continuous. Can be estimate for a single data point or can be run in batch for many observations.
Extrapolation will produce untrustworthy results; the provided treatment should be within the range of the
training data.

Parameters

T: Numpy array, shape (n_samples,) A continuous treatment variable.

Returns

array: Numpy array Contains a set of CDRC point estimates

point_estimate_interval(T, ci=0.95)
Calculates the prediction confidence interval associated with a point estimate within the CDRC given
treatment values. Can only be used when outcome is continuous. Can be estimate for a single data point or

9.1. causal_curve package 37

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

can be run in batch for many observations. Extrapolation will produce untrustworthy results; the provided
treatment should be within the range of the training data.

Parameters

T: Numpy array, shape (n_samples,) A continuous treatment variable.

ci: float (default = 0.95) The desired confidence interval to produce. Default value is 0.95,
corresponding to 95% confidence intervals. bounded (0, 1.0).

Returns

array: Numpy array Contains a set of CDRC prediction intervals ([lower bound, higher
bound])

9.1.4 causal_curve.gps_classifier module

Defines the Generalized Prospensity Score (GPS) classifier model class

class causal_curve.gps_classifier.GPS_Classifier(gps_family=None, treat-
ment_grid_num=100,
lower_grid_constraint=0.01,
upper_grid_constraint=0.99,
spline_order=3, n_splines=30,
lambda_=0.5, max_iter=100, ran-
dom_seed=None, verbose=False)

Bases: causal_curve.gps_core.GPS_Core

A GPS tool that handles binary outcomes. Inherits the GPS_core base class. See that base class code its
docstring for more details.

Methods

estimate_log_odds:
(self, T)

Calculates the predicted log odds of the highest integer class. Can only be used
when the outcome is binary.

estimate_log_odds(T)
Calculates the estimated log odds of the highest integer class. Can only be used when the outcome is
binary. Can be estimate for a single data point or can be run in batch for many observations. Extrapolation
will produce untrustworthy results; the provided treatment should be within the range of the training data.

Parameters

T: Numpy array, shape (n_samples,) A continuous treatment variable.

Returns

array: Numpy array Contains a set of log odds

9.1.5 causal_curve.tmle_core module

Defines the Targetted Maximum likelihood Estimation (TMLE) model class

38 Chapter 9. causal_curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

class causal_curve.tmle_core.TMLE_Core(treatment_grid_num=100,
lower_grid_constraint=0.01, up-
per_grid_constraint=0.99, n_estimators=200,
learning_rate=0.01, max_depth=3, bandwidth=0.5,
random_seed=None, verbose=False)

Bases: causal_curve.core.Core

Constructs a causal dose response curve via a modified version of Targetted Maximum Likelihood Estimation
(TMLE) across a grid of the treatment values. Gradient boosting is used for prediction of the Q model and G
models, simple kernel regression is used processing those model results, and a generalized additive model is
used in the final step to contruct the final curve. Assumes continuous treatment and outcome variable.

WARNING:

-The treatment values should be roughly normally-distributed for this tool to work. Otherwise you may en-
counter internal math errors.

-This algorithm assumes you’ve already performed the necessary transformations to categorical covariates (i.e.
these variables are already one-hot encoded and one of the categories is excluded for each set of dummy vari-
ables).

-Please take care to ensure that the “ignorability” assumption is met (i.e. all strong confounders are captured in
your covariates and there is no informative censoring), otherwise your results will be biased, sometimes strongly
so.

Parameters

treatment_grid_num: int, optional (default = 100) Takes the treatment, and creates a
quantile-based grid across its values. For instance, if the number 6 is selected, this means
the algorithm will only take the 6 treatment variable values at approximately the 0, 20, 40,
60, 80, and 100th percentiles to estimate the causal dose response curve. Higher value here
means the final curve will be more finely estimated, but also increases computation time.
Default is usually a reasonable number.

lower_grid_constraint: float, optional(default = 0.01) This adds an optional constraint of the
lower side of the treatment grid. Sometimes data near the minimum values of the treatment
are few in number and thus generate unstable estimates. By default, this clips the bottom 1
percentile or lower of treatment values. This can be as low as 0, indicating there is no lower
limit to how much treatment data is considered.

upper_grid_constraint: float, optional (default = 0.99) See above parameter. Just like above,
but this is an upper constraint. By default, this clips the top 99th percentile or higher of
treatment values. This can be as high as 1.0, indicating there is no upper limit to how much
treatment data is considered.

n_estimators: int, optional (default = 200) Optional argument to set the number of learners to
use when sklearn creates TMLE’s Q and G models.

learning_rate: float, optional (default = 0.01) Optional argument to set the sklearn’s learning
rate for TMLE’s Q and G models.

max_depth: int, optional (default = 3) Optional argument to set sklearn’s maximum depth
when creating TMLE’s Q and G models.

bandwidth: float, optional (default = 0.5) Optional argument to set the bandwidth parameter
of the internal kernel density estimation and kernel regression methods.

random_seed: int, optional (default = None) Sets the random seed.

verbose: bool, optional (default = False) Determines whether the user will get verbose status
updates.

9.1. causal_curve package 39

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

References

Kennedy EH, Ma Z, McHugh MD, Small DS. Nonparametric methods for doubly robust estimation of continu-
ous treatment effects. Journal of the Royal Statistical Society, Series B. 79(4), 2017, pp.1229-1245.

van der Laan MJ and Rubin D. Targeted maximum likelihood learning. In: The International Journal of Bio-
statistics, 2(1), 2006.

van der Laan MJ and Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation.
In: The International Journal of Biostatistics 6(1), 2010.

Examples

>>> # With continuous outcome
>>> from causal_curve import TMLE_Regressor
>>> tmle = TMLE_Regressor()
>>> tmle.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome'])
>>> tmle_results = tmle.calculate_CDRC(0.95)
>>> point_estimate = tmle.point_estimate(np.array([5.0]))
>>> point_estimate_interval = tmle.point_estimate_interval(np.array([5.0]), 0.95)

Attributes

grid_values: array of shape (treatment_grid_num,) The gridded values of the treatment
variable. Equally spaced.

final_gam: ‘pygam.LinearGAM‘ class trained final model of LinearGAM class, from
pyGAM library

pseudo_out: array of shape (observations,) Adjusted, pseudo-outcome observations

Methods

fit: (self, T, X, y) Fits the causal dose-response model
calculate_CDRC: (self, ci,
CDRC_grid_num)

Calculates the CDRC (and confidence interval) from TMLE
estimation

calculate_CDRC(ci=0.95)
Using the results of the fitted model, this generates a dataframe of CDRC point estimates at each of
the values of the treatment grid. Connecting these estimates will produce the overall estimated CDRC.
Confidence interval is returned as well.

Parameters

ci: float (default = 0.95) The desired confidence interval to produce. Default value is 0.95,
corresponding to 95% confidence intervals. bounded (0, 1.0).

Returns

dataframe: Pandas dataframe Contains treatment grid values, the CDRC point estimate
at that value, and the associated lower and upper confidence interval bounds at that point.

self: object

fit(T, X, y)
Fits the TMLE causal dose-response model. For now, this only accepts pandas columns. You must provide
at least one covariate column.

40 Chapter 9. causal_curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

Parameters

T: array-like, shape (n_samples,) A continuous treatment variable

X: array-like, shape (n_samples, m_features) Covariates, where n_samples is the number
of samples and m_features is the number of features

y: array-like, shape (n_samples,) Outcome variable

Returns

self [object]

one_dim_estimate_density(series)
Takes in a numpy array, returns grid values for KDE and predicted probabilities

pred_from_loess(train_x, train_y, x_to_pred)
Trains simple loess regression and returns predictions

9.1.6 causal_curve.tmle_regressor module

Defines the Targetted Maximum likelihood Estimation (TMLE) regressor model class

class causal_curve.tmle_regressor.TMLE_Regressor(treatment_grid_num=100,
lower_grid_constraint=0.01,
upper_grid_constraint=0.99,
n_estimators=200, learn-
ing_rate=0.01, max_depth=3,
bandwidth=0.5, random_seed=None,
verbose=False)

Bases: causal_curve.tmle_core.TMLE_Core

A TMLE tool that handles continuous outcomes. Inherits the TMLE_core base class. See that base class code
its docstring for more details.

Methods

point_estimate:
(self, T)

Calculates point estimate within the CDRC given treatment values. Can only be used
when outcome is continuous.

point_estimate(T)
Calculates point estimate within the CDRC given treatment values. Can only be used when outcome
is continuous. Can be estimate for a single data point or can be run in batch for many observations.
Extrapolation will produce untrustworthy results; the provided treatment should be within the range of the
training data.

Parameters

T: Numpy array, shape (n_samples,) A continuous treatment variable.

Returns

array: Numpy array Contains a set of CDRC point estimates

point_estimate_interval(T, ci=0.95)
Calculates the prediction confidence interval associated with a point estimate within the CDRC given
treatment values. Can only be used when outcome is continuous. Can be estimate for a single data point or
can be run in batch for many observations. Extrapolation will produce untrustworthy results; the provided
treatment should be within the range of the training data.

9.1. causal_curve package 41

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

Parameters

T: Numpy array, shape (n_samples,) A continuous treatment variable.

ci: float (default = 0.95) The desired confidence interval to produce. Default value is 0.95,
corresponding to 95% confidence intervals. bounded (0, 1.0).

Returns

array: Numpy array Contains a set of CDRC prediction intervals ([lower bound, higher
bound])

9.1.7 causal_curve.mediation module

Defines the Mediation test class

class causal_curve.mediation.Mediation(treatment_grid_num=10,
lower_grid_constraint=0.01, up-
per_grid_constraint=0.99, bootstrap_draws=500,
bootstrap_replicates=100, spline_order=3,
n_splines=5, lambda_=0.5, max_iter=100, ran-
dom_seed=None, verbose=False)

Bases: causal_curve.core.Core

Given three continuous variables (a treatment or independent variable of interest, a potential mediator, and an
outcome variable of interest), Mediation provides a method to determine the average direct and indirect effect.

Parameters

treatment_grid_num: int, optional (default = 10) Takes the treatment, and creates a quantile-
based grid across its values. For instance, if the number 6 is selected, this means the algo-
rithm will only take the 6 treatment variable values at approximately the 0, 20, 40, 60, 80,
and 100th percentiles to estimate the causal dose response curve. Higher value here means
the final curve will be more finely estimated, but also increases computation time. Default
is usually a reasonable number.

lower_grid_constraint: float, optional(default = 0.01) This adds an optional constraint of the
lower side of the treatment grid. Sometimes data near the minimum values of the treatment
are few in number and thus generate unstable estimates. By default, this clips the bottom 1
percentile or lower of treatment values. This can be as low as 0, indicating there is no lower
limit to how much treatment data is considered.

upper_grid_constraint: float, optional (default = 0.99) See above parameter. Just like above,
but this is an upper constraint. By default, this clips the top 99th percentile or higher of
treatment values. This can be as high as 1.0, indicating there is no upper limit to how much
treatment data is considered.

bootstrap_draws: int, optional (default = 500) Bootstrapping is used as part of the mediation
test. The parameter determines the number of draws from the original data to create a single
bootstrap replicate.

bootstrap_replicates: int, optional (default = 100) Bootstrapping is used as part of the medi-
ation test. The parameter determines the number of bootstrapping runs to perform / number
of new datasets to create.

spline_order: int, optional (default = 3) Order of the splines to use fitting the final GAM.
Must be integer >= 1. Default value creates cubic splines.

n_splines: int, optional (default = 5) Number of splines to use for the mediation and outcome
GAMs. Must be integer >= 2. Must be non-negative.

42 Chapter 9. causal_curve

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

lambda_: int or float, optional (default = 0.5) Strength of smoothing penalty. Must be a pos-
itive float. Larger values enforce stronger smoothing.

max_iter: int, optional (default = 100) Maximum number of iterations allowed for the maxi-
mum likelihood algo to converge.

random_seed: int, optional (default = None) Sets the random seed.

verbose: bool, optional (default = False) Determines whether the user will get verbose status
updates.

References

Imai K., Keele L., Tingley D. A General Approach to Causal Mediation Analysis. Psychological Methods.
15(4), 2010, pp.309–334.

Examples

>>> from causal_curve import Mediation
>>> med = Mediation(treatment_grid_num = 200, random_seed = 512)
>>> med.fit(T = df['Treatment'], M = df['Mediator'], y = df['Outcome'])
>>> med_results = med.calculate_effects(0.95)

Attributes

grid_values: array of shape (treatment_grid_num,) The gridded values of the treatment
variable. Equally spaced.

Methods

fit: (self, T, M, y) Fits the trio of relevant variables using generalized additive models.
calculate_effects: (self, ci) Calculates the average direct and indirect effects.

calculate_mediation(ci=0.95)
Conducts mediation analysis on the fit data

Parameters

ci: float (default = 0.95) The desired bootstrap confidence interval to produce. Default
value is 0.95, corresponding to 95% confidence intervals. bounded (0, 1.0).

Returns

dataframe: Pandas dataframe Contains the estimate of the direct and indirect effects and
the proportion of indirect effects across the treatment grid values. The bootstrap confi-
dence interval that is returned might not be symmetric.

self [object]

fit(T, M, y)
Fits models so that mediation analysis can be run. For now, this only accepts pandas columns.

Parameters

T: array-like, shape (n_samples,) A continuous treatment variable

M: array-like, shape (n_samples,) A continuous mediation variable

9.1. causal_curve package 43

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

y: array-like, shape (n_samples,) A continuous outcome variable

Returns

self [object]

9.1.8 Module contents

causal_curve module

44 Chapter 9. causal_curve

CHAPTER 10

Change Log

10.1 Version 1.0.6

• Latest version of python black can now run. Linted tmle_core.py.

10.2 Version 1.0.5

• Removed master branch, replaced with main

• Removed all mention of master branch from documentation

10.3 Version 1.0.4

• Fixed TMLE plot and code errors in documentation

10.4 Version 1.0.3

• Fixed bug with random_seed functionality in all tools

10.5 Version 1.0.2

• Updated end-to-end example notebook in /examples folder

• Fixed various class docstrings if they still reference old v0.5.2 API

• Fixed bug where custom class input parameters weren’t being used

45

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

10.6 Version 1.0.1

• Added to TMLE overview in the docs (including plot)

10.7 Version 1.0.0: Major Update

• Overhaul of the TMLE tool to make it dramatically more accurate and user-friendly.

• Improved TMLE example documentation

• Much like with scikit-learn, there are now separate model classes used for predicting binary or continuous
outcomes

• Updating documentation to reflect API changes

• Added more tests

• Linted with pylint (added .pylintrc file)

10.8 Version 0.5.2

• Fixed bug that prevented causal-curve modules from being shown in Sphinx documentation

• Augmented tests to capture more error states and improve code coverage

10.9 Version 0.5.1

• Removed working test file

10.10 Version 0.5.0

• Added new predict, predict_interval, and predict_log_odds methods to GPS tool

• Slight updates to doc to reflect new features

10.11 Version 0.4.1

• When using GPS tool with a treatment with negative values, only the normal GLM family can be picked

• Added ‘sphinx_rtd_theme’ to dependency list in .travis.yml and install.rst

• core.py base class now has __version__ attribute

10.12 Version 0.4.0

• Added support for binary outcomes in GPS tool

• Small changes to repo README

46 Chapter 10. Change Log

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

10.13 Version 0.3.8

• Added citation (yay!)

10.14 Version 0.3.7

• Bumped version for PyPi

10.15 Version 0.3.6

• Fixed bug in Mediation.calculate_mediation that would clip treatments < 0 or > 1

• Fixed incorrect horizontal axis labels in lead example

• Fixed typos in documentation

• Added links to resources so users could learn more about causal inference theory

10.16 Version 0.3.5

• Re-organized documentation

• Added Introduction section to explain purpose and need for the package

10.17 Version 0.3.4

• Removed XGBoost as dependency.

• Now using sklearn’s gradient boosting implementation.

10.18 Version 0.3.3

• Misc edits to paper and bibliography

10.19 Version 0.3.2

• Fixed random seed issue with Mediation tool

• Fixed Mediation bootstrap issue. Confidence interval bounded [0,1]

• Fixed issue with all classes not accepting non-sequential indicies in pandas Dataframes/Series

• Class init checks for all classes now print cleaner errors if bad input

10.13. Version 0.3.8 47

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

10.20 Version 0.3.1

• Small fixes to end-to-end example documentation

• Enlarged image in paper

10.21 Version 0.3.0

• Added full, end-to-end example of package usage to documentation

• Cleaned up documentation

• Added example folder with end-to-end notebook

• Added manuscript to paper folder

10.22 Version 0.2.4

• Strengthened unit tests

10.23 Version 0.2.3

• codecov integration

10.24 Version 0.2.2

• Travis CI integration

10.25 Version 0.2.1

• Fixed Mediation tool error / removed tqdm from requirements

• Misc documentation cleanup / revisions

10.26 Version 0.2.0

• Added new Mediation class

• Updated documentation to reflect this

• Added unit and integration tests for Mediation methods

10.27 Version 0.1.3

• Simplifying unit and integration tests.

48 Chapter 10. Change Log

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

10.28 Version 0.1.2

• Added unit and integration tests

10.29 Version 0.1.1

• setup.py fix

10.30 Version 0.1.0

• Added new TMLE class

• Updated documentation to reflect new TMLE method

• Renamed CDRC method to more appropriate GPS method

• Small docstring corrections to GPS method

10.31 Version 0.0.10

• Bug fix in GPS estimation method

10.32 Version 0.0.9

• Project created

10.28. Version 0.1.2 49

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

50 Chapter 10. Change Log

CHAPTER 11

Citation

Please consider citing us in your academic or industry project.

Kobrosly, R. W., (2020). causal-curve: A Python Causal Inference Package to Estimate Causal Dose-Response Curves.
Journal of Open Source Software, 5(52), 2523, https://doi.org/10.21105/joss.02523

causal-curve is a Python package with tools to perform causal inference when the treatment of interest is continuous.

51

https://doi.org/10.21105/joss.02523

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

52 Chapter 11. Citation

CHAPTER 12

Summary

(Version 1.0.0 released in Jan 2021!)

There are many available methods to perform causal inference when your intervention of interest is binary, but few
methods exist to handle continuous treatments. This is unfortunate because there are many scenarios (in industry and
research) where these methods would be useful. This library attempts to address this gap, providing tools to estimate
causal curves (AKA causal dose-response curves). Both continuous and binary outcomes can be modeled with this
package.

53

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

54 Chapter 12. Summary

CHAPTER 13

Quick example (of the GPS_Regressor tool)

causal-curve uses a sklearn-like API that should feel familiar to python machine learning users. This includes
_Regressor and _Classifier models, and fit() methods.

The following example estimates the causal dose-response curve (CDRC) by calculating generalized propensity scores.

>>> from causal_curve import GPS_Regressor
>>> import numpy as np

>>> gps = GPS_Regressor(treatment_grid_num = 200, random_seed = 512)

>>> df # a pandas dataframe with your data
X_1 X_2 Treatment Outcome

0 0.596685 0.162688 0.000039 -0.270533
1 1.014187 0.916101 0.000197 -0.266979
2 0.932859 1.328576 0.000223 1.921979
3 1.140052 0.555203 0.000339 1.461526
4 1.613471 0.340886 0.000438 2.064511

>>> gps.fit(T = df['Treatment'], X = df[['X_1', 'X_2']], y = df['Outcome'])
>>> gps_results = gps.calculate_CDRC(ci = 0.95)
>>> gps_point = gps.point_estimate(np.array([0.0003]))
>>> gps_point_interval = gps.point_estimate_interval(np.array([0.0003]), ci = 0.95)

1. First we import the GPS_Regressor class.

2. Then we instantiate the class, providing any of the optional parameters.

3. Prepare and organized your treatment, covariate, and outcome data into a pandas dataframe.

4. Fit the load the training and test sets by calling the .fit() method.

5. Estimate the points of the causal curve (along with 95% confidence interval bounds) with the .
calculate_CDRC() method.

6. Generate point estimates along the causal curve with the .point_estimate(), .
point_estimate_interval(), and .estimate_log_odds() methods.

55

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

7. Explore or plot your results!

56 Chapter 13. Quick example (of the GPS_Regressor tool)

Python Module Index

c
causal_curve, 44
causal_curve.core, 33
causal_curve.gps_classifier, 38
causal_curve.gps_core, 34
causal_curve.gps_regressor, 37
causal_curve.mediation, 42
causal_curve.tmle_core, 38
causal_curve.tmle_regressor, 41

57

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

58 Python Module Index

Index

C
calculate_CDRC() (causal_curve.gps_core.GPS_Core

method), 36
calculate_CDRC() (causal_curve.tmle_core.TMLE_Core

method), 40
calculate_mediation()

(causal_curve.mediation.Mediation method),
43

calculate_z_score() (causal_curve.core.Core
static method), 33

causal_curve (module), 44
causal_curve.core (module), 33
causal_curve.gps_classifier (module), 38
causal_curve.gps_core (module), 34
causal_curve.gps_regressor (module), 37
causal_curve.mediation (module), 42
causal_curve.tmle_core (module), 38
causal_curve.tmle_regressor (module), 41
clip_negatives() (causal_curve.core.Core static

method), 33
Core (class in causal_curve.core), 33

E
estimate_log_odds()

(causal_curve.gps_classifier.GPS_Classifier
method), 38

F
fit() (causal_curve.gps_core.GPS_Core method), 36
fit() (causal_curve.mediation.Mediation method), 43
fit() (causal_curve.tmle_core.TMLE_Core method),

40

G
get_params() (causal_curve.core.Core method), 33
GPS_Classifier (class in

causal_curve.gps_classifier), 38
GPS_Core (class in causal_curve.gps_core), 34

GPS_Regressor (class in
causal_curve.gps_regressor), 37

I
if_verbose_print() (causal_curve.core.Core

method), 34

M
Mediation (class in causal_curve.mediation), 42

O
one_dim_estimate_density()

(causal_curve.tmle_core.TMLE_Core method),
41

P
point_estimate() (causal_curve.gps_regressor.GPS_Regressor

method), 37
point_estimate() (causal_curve.tmle_regressor.TMLE_Regressor

method), 41
point_estimate_interval()

(causal_curve.gps_regressor.GPS_Regressor
method), 37

point_estimate_interval()
(causal_curve.tmle_regressor.TMLE_Regressor
method), 41

pred_from_loess()
(causal_curve.tmle_core.TMLE_Core method),
41

print_gam_summary()
(causal_curve.gps_core.GPS_Core method),
37

R
rand_seed_wrapper() (causal_curve.core.Core

static method), 34

T
TMLE_Core (class in causal_curve.tmle_core), 38

59

causal𝑐𝑢𝑟𝑣𝑒,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.6

TMLE_Regressor (class in
causal_curve.tmle_regressor), 41

60 Index

	Introduction to causal-curve
	Interpreting the causal curve
	A caution about causal inference assumptions
	References

	Installation, testing and development
	Dependencies
	User installation
	Testing
	Development

	Contributing guide
	Submitting a bug report or a feature request
	Contributing code
	Contributing to the documentation

	Health data: generating causal curves and examining mediation
	The causal effect of blood lead levels on cognitive performance in children
	Do blood lead levels mediate the relationship between poverty and cognitive performance?
	References

	GPS_Regressor Tool (continuous treatments, continuous outcomes)
	References

	GPS_Classifier Tool (continuous treatments, binary outcomes)
	References

	TMLE_Regressor Tool (continuous treatments, continuous outcomes)
	References

	Mediation Tool (continuous treatment, mediator, and outcome)
	References

	causal_curve
	causal_curve package

	Change Log
	Version 1.0.6
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0.0: Major Update
	Version 0.5.2
	Version 0.5.1
	Version 0.5.0
	Version 0.4.1
	Version 0.4.0
	Version 0.3.8
	Version 0.3.7
	Version 0.3.6
	Version 0.3.5
	Version 0.3.4
	Version 0.3.3
	Version 0.3.2
	Version 0.3.1
	Version 0.3.0
	Version 0.2.4
	Version 0.2.3
	Version 0.2.2
	Version 0.2.1
	Version 0.2.0
	Version 0.1.3
	Version 0.1.2
	Version 0.1.1
	Version 0.1.0
	Version 0.0.10
	Version 0.0.9

	Citation
	Summary
	Quick example (of the GPS_Regressor tool)
	Python Module Index
	Index

